
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Drivers in High-Level Languages

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Alexander Frank,
Thomas Günzel, Stefan Huber, Alexandru Obada, Maximilian Pudelko,

Maximilian Stadlmeier, Sebastian Voit, Thomas Zwickl

April 21, 2019

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Drivers in High-Level Languages

Paul Emmerich1, Simon Ellmann2, Fabian Bonk3, Alex Egger4, Alexander Frank5,
Thomas Günzel6, Stefan Huber7, Alexandru Obada8, Maximilian Pudelko9,

Maximilian Stadlmeier10, Sebastian Voit11, Thomas Zwickl12

1C, Thesis advisor 2Rust 3OCaml 4Haskell 5Latency measurement setup
6Swift 7IOMMU 8Python 9VirtIO driver 10C# 11Go 12Interrupts

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

About us

Paul
• PhD student at Technical University of Munich
• Researching software packet processing performance

Simon
• Rust driver as bachelor’s thesis, now research assistant (HiWi)

Everyone else mentioned on the title slide
• Did a thesis with Paul as advisor

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 1

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

C is an awesome language for operating systems!

• Low-level access to memory and devices
• Pointers are awesome
• You can write safe and secure code if you try really hard
• Everyone can read and write C
• C code can be beautiful

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 2

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Beautiful C code

#define mystery_macro(ptr, type, member) ({\
const typeof(((type*)0)->member)* __mptr = (ptr);\
(type*)((char*)__mptr - offsetof(type, member));\

})

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 3

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Beautiful C code

#define container_of(ptr, type, member) ({\
const typeof(((type*)0)->member)* __mptr = (ptr);\
(type*)((char*)__mptr - offsetof(type, member));\

})

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 4

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Beautiful C code

#define container_of(ptr, type, member) ({\
const typeof(((type*)0)->member)* __mptr = (ptr);\
(type*)((char*)__mptr - offsetof(type, member));\

})

• Allows some “inheritance” in C to abstract driver implementations
• Virtually all C drivers use this macro
• The Linux kernel contains ≈ 15,000 uses of this macro

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 5

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

C can cause security problems

(...)

• Screenshot from https://www.cvedetails.com/

• Security bugs found in the Linux kernel in the last ≈ 20 years

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 6

https://www.cvedetails.com/

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

C can cause security problems

• Not all bugs can be blamed on the language
• Cutler et al. analyzed 65 CVEs categorized as code execution in the Linux kernel 1

Bug type Num. Perc. Can be avoided by using a better language?

Various 11 17% Unclear/Maybe
Logic 14 22% No
Use-after-free 8 12% Yes
Out of bounds 32 49% Yes (likely leads to panic)

Table 1: Code execution vulnerabilities in the Linux kernel identified by Cutler et al.1

1 C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and costs of writing a POSIX kernel in a high-level language”,
USENIX OSDI, 2018

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 7

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

C can cause security problems

• Not all bugs can be blamed on the language
• Cutler et al. analyzed 65 CVEs categorized as code execution in the Linux kernel 1

Bug type Num. Perc. Can be avoided by using a better language?

Various 11 17% Unclear/Maybe
Logic 14 22% No
Use-after-free 8 12% Yes
Out of bounds 32 49% Yes (likely leads to panic)

Table 1: Code execution vulnerabilities in the Linux kernel identified by Cutler et al.1

1 C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and costs of writing a POSIX kernel in a high-level language”,
USENIX OSDI, 2018

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 7

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Let’s rewrite all operating systems in better languages?

• Rewriting the whole operating system in a safer language is a laudable effort
• Redox (Rust) wants to become a production-grade OS but currently isn’t
• Singularity (Sing#, Microsoft Research) demonstrated some interesting concepts
• Biscuit (Go) implements parts of POSIX for research
• Unikernels like MirageOS (OCaml) or IncludeOS (C++) can be useful in some scenarios

• But none of these will replace your main operating system any time soon

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 8

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Let’s rewrite all operating systems in better languages?

• Rewriting the whole operating system in a safer language is a laudable effort
• Redox (Rust) wants to become a production-grade OS but currently isn’t
• Singularity (Sing#, Microsoft Research) demonstrated some interesting concepts
• Biscuit (Go) implements parts of POSIX for research
• Unikernels like MirageOS (OCaml) or IncludeOS (C++) can be useful in some scenarios

• But none of these will replace your main operating system any time soon

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 8

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Where are these bugs that could have been prevented?

• We looked at these 40 preventable bugs
• 39 of them were in drivers (the other was in the Bluetooth stack)

• 13 were in the Qualcomm WiFi driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 9

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Where are these bugs that could have been prevented?

• We looked at these 40 preventable bugs
• 39 of them were in drivers (the other was in the Bluetooth stack)
• 13 were in the Qualcomm WiFi driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 9

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Where are these bugs that could have been prevented?

• We looked at these 40 preventable bugs
• 39 of them were in drivers (the other was in the Bluetooth stack)
• 13 were in the Qualcomm WiFi driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 9

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Can we rewrite drivers in better languages?

• Some operating systems have drivers in (subsets of) C++
• But good luck getting a driver in Rust or Go upstreamed in Linux

• User space drivers can be written in any language!
• But are all languages an equally good choice?
• Is a JIT compiler or a garbage collector a problem in a driver?

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Can we rewrite drivers in better languages?

• Some operating systems have drivers in (subsets of) C++
• But good luck getting a driver in Rust or Go upstreamed in Linux
• User space drivers can be written in any language!
• But are all languages an equally good choice?
• Is a JIT compiler or a garbage collector a problem in a driver?

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network drivers

Intel XL710 [Picture: Intel.com]

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 11

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Why look at network drivers?

• We happen to know a lot about networks ;)
• Easy to benchmark to quantify results
• Huge attack surface: exposed to the external world by design
• User space network drivers are already quite common (e.g., DPDK, Snabb)
• Network stacks are also moving into the user space (e.g., TCP stack on iOS)

• Everything mentioned here is applicable to other drivers as well

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 12

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Why look at network drivers?

• We happen to know a lot about networks ;)
• Easy to benchmark to quantify results
• Huge attack surface: exposed to the external world by design
• User space network drivers are already quite common (e.g., DPDK, Snabb)
• Network stacks are also moving into the user space (e.g., TCP stack on iOS)
• Everything mentioned here is applicable to other drivers as well

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 12

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network driver complexity is increasing

10M 100M 1G 2.5G 10G 40G100G
102

103

104

105

0.3624x+ 5781

Max supported speed

L
in
es

of
co
d
e

DPDK drivers Linux drivers

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 13

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

The ixy driver

• Our attempt to write a simple yet fast user space network driver
• It’s a user space driver you can easily understand and read
• Supports Intel ixgbe NICs (82599, X540, Xeon D, ...) and VirtIO
• ≈ 1,000 lines of C code, full of references to datasheets and specs
• Intel driver: 38,000 lines in DPDK, 30,000 in Linux
• See talk “Demystifying Network Cards” at 34C3 for details

• But it’s written in C, so let’s rewrite that in a better and safer language

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 18

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
• Magic memory area that is mapped to the device
• Memory reads/writes are directly forwarded to the device
• Usually used to expose device registers
• User space drivers: mmap a magic file

2. Direct memory access (DMA)
3. Interrupts

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 19

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)

• Allows the device to read/write arbitrary memory locations
• User space drivers: figure out physical addresses, tell the device to write there

3. Interrupts

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 20

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Basics: How to talk to (modern) PCIe devices

1. Memory-mapped IO (MMIO)
2. Direct memory access (DMA)
3. Interrupts

• This is how the device informs you about events
• User space drivers: available via the Linux vfio subsystem
• (Usually) not useful for high-speed network drivers
• We’ll ignore interrupts here (implementation is WIP)

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 21

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

How to write a user space driver in 4 simple steps

1. Unload kernel driver
2. mmap the PCIe MMIO address space
3. Figure out physical addresses for DMA
4. Write the driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 22

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Hardware: Intel ixgbe family (10 Gbit/s)

• ixgbe family: 82599ES (aka X520), X540, X550, Xeon D embedded NIC
• Commonly found in servers or as on-board chips
• Very good datasheet publicly available

• Almost no logic hidden behind black-box firmware

• Black-box firmware contains almost no magic
• Drivers for many newer NICs often just exchanges messages with the firmware
• Here: all hardware features directly exposed to the driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 23

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Hardware: Intel ixgbe family (10 Gbit/s)

• ixgbe family: 82599ES (aka X520), X540, X550, Xeon D embedded NIC
• Commonly found in servers or as on-board chips
• Very good datasheet publicly available

• Almost no logic hidden behind black-box firmware
• Black-box firmware contains almost no magic
• Drivers for many newer NICs often just exchanges messages with the firmware
• Here: all hardware features directly exposed to the driver

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 23

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Find the device we want to use

lspci
03:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...
03:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 24

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Find the device we want to use

lspci
03:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...
03:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 25

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unload the kernel driver

echo 0000:03:00.1 > /sys/bus/pci/devices/0000:03:00.1/driver/unbind

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 26

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

mmap the PCIe register address space from user space

int fd = open("/sys/bus/pci/devices/0000:03:00.0/resource0", O_RDWR);
struct stat stat;
fstat(fd, &stat);
uint8_t* registers = (uint8_t*) mmap(NULL, stat.st_size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 27

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Device registers

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 28

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Access registers: LEDs

#define LEDCTL 0x00200
#define LED0_BLINK_OFFS 7

uint32_t leds = *((volatile uint32_t*)(registers + LEDCTL));
((volatile uint32_t)(registers + LEDCTL)) = leds | (1 << LED0_BLINK_OFFS);

• Memory-mapped IO: all memory accesses go directly to the NIC
• One of the very few valid uses of volatile in C

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 29

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Handling packets via DMA

• Packets are transferred via queue interfaces (often called rings)
• Rings are configured via MMIO and accessed by the device via DMA
• Rings (usually) contain pointers to packets, also accessed via DMA

• Details vary between different devices
• This is not unique to NICs: most PCIe devices work in a similar manner

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 30

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Handling packets via DMA

• Packets are transferred via queue interfaces (often called rings)
• Rings are configured via MMIO and accessed by the device via DMA
• Rings (usually) contain pointers to packets, also accessed via DMA

• Details vary between different devices
• This is not unique to NICs: most PCIe devices work in a similar manner

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 30

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Challenges for high-level languages

• Access to mmap with the proper flags
• Handle externally allocated (foreign) memory in the language
• Handle memory layouts/formats (i.e., access memory that looks like a given C struct)
• Memory access semantics: memory barriers, volatile reads/writes
• Some operations in drivers are inherently unsafe

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 31

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

We wrote full user space drivers in these languages

C#

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 32

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Goals for our implementations

• Implement the same feature set as our C reference driver
• Use a similar structure like the C driver
• Write idiomatic code for the selected language
• Use language safety features where possible
• Quantify trade-offs for performance vs. safety

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 33

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Language comparison: Overview

Language Main paradigm Memory management Compilation

C Imperative No Compiled
Rust Imperative Ownership/RAII (LLVM) Compiled
Go Imperative Garbage collection Compiled
C# Object-oriented Garbage collection JIT
Swift Protocol-oriented Reference counting (LLVM) Compiled
OCaml Functional Garbage collection Compiled
Haskell Functional Garbage collection (LLVM) Compiled
Python Imperative Garbage collection Interpreted

Table 2: Language overview

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 34

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Language comparison: Safety properties

General memory Packet buffers
Language Bounds checks Use after free Bounds checks Use after free Int overflows

C 7 7 7 7 7

Rust
Go
C#
Swift
Haskell
OCaml
Python

Table 3: Language-level protections against classes of bugs in our drivers

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Language comparison: Safety properties
General memory Packet buffers

Language Bounds checks Use after free Bounds checks Use after free Int overflows

C 7 7 7 7 7

Rust 3 3 (3)1 3 (3)4

Go 3 3 (3)1 (3)3 7

C# 3 3 (3)1 (3)3 7

Swift 3 3 72 (3)3 3

Haskell 3 3 (3)1 (3)3 7

OCaml 3 3 (3)1 (3)3 7

Python 3 3 (3)1 (3)3 7

1 Bounds enforced by wrapper, constructor in unsafe code
2 Bounds only enforced in debug mode
3 Buffers are never free’d, only returned to a memory pool
4 Disabled by default, proposed to be enabled by default in the future

Table 4: Language-level protections against classes of bugs in our drivers

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Language comparison: Implementation sizes

Lang. Lines of code1 Lines of C code1 Source size (gzip2)

C 831 831 12.9 kB
Rust 961 0 10.4 kB
Go 1640 0 20.6 kB
C# 1266 34 13.1 kB
Swift 1506 0 15.9 kB
Haskell 1001 0 9.6 kB
OCaml 1177 28 12.3 kB
Python 1242 (Cython) 77 14.2 kB

1 Excluding empty lines and comments, counted with cloc
2 Compression level 6

Table 5: Size of our implementations (w/o register constants, stripped features not found in all drivers)

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 37

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Rust

What is Rust?
A safe, concurrent, practical systems language.

• No garbage collector
• Unique ownership system and rules for moving/borrowing values
• Unsafe mode

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 39

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: The ownership system

• Immutability of variables by default
• Three rules:

1. Each value has a variable that is its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value is freed

• Rules enforced at compile-time
• Ownership can be passed to another variable

• “moving” the value or by
• “borrowing” it through a reference

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 40

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: The ownership system by example

• Packets are owners of some DMA memory
• Packets are passed between user code and the driver, thus ownership is passed
• At any point in time there is only one Packet owner that can change its memory

let buffer: &mut VecDeque<Packet> = VecDeque::new();
dev.rx_batch(RX_QUEUE, buffer, BATCH_SIZE);
for p in buffer.iter_mut() {

p[48] += 1;
}
dev.tx_batch(TX_QUEUE, buffer);
buffer.drain(..);

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 41

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Safety in Rust: Unsafe code

• Not everything can be done in safe Rust
• Calling foreign functions and dereferencing raw pointers is unsafe
• Many functions in Rust’s standard library make use of unsafe code

let ptr = unsafe {
libc::mmap(
ptr::null_mut(), len, libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED, file.as_raw_fd(), 0,

) as *mut u8
};

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 42

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Example: Setting registers

• Biggest challenge: safe memory handling with unsafe code

fn set_reg32(&self, reg: u32, val: u32) {
assert!(
reg as usize <= self.len - 4 as usize,
"memory access out of bounds"

);
unsafe {
ptr::write_volatile(

(self.addr as usize + reg as usize) as *mut u32, val
);

}
}

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 43

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance comparison: Test setup

Device under test

MoonGen packet generator

ixy

10 Gbit/s 10 Gbit/s

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 44

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Batching at 3.3 GHz CPU speed (single core)

1 2 4 8 16 32 64 128 256
0

10

20

30

Batch size

P
ac
k
et

ra
te

[M
p
p
s] C

Rust

Go

C#

OCaml

Swift

Haskell

Python

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 45

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Swift: Why so slow?

• Lots of time spent in Swift’s memory management
• Swift adds calls to release/retain for each used object in each function
• This is basically the same as wrapping every object in a std::shared_ptr in C++

• Time in release/retain: 76%
• For comparison: Go spends less than 0.5% in the garbage collector

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 46

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Swift: Why so slow?

• Lots of time spent in Swift’s memory management
• Swift adds calls to release/retain for each used object in each function
• This is basically the same as wrapping every object in a std::shared_ptr in C++

• Time in release/retain: 76%
• For comparison: Go spends less than 0.5% in the garbage collector

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 46

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Why is Rust slower than C?
Batch 32, 1.6 GHz Batch 8, 1.6 GHz

Events per packet C Rust C Rust

Cycles 94 100 108 120
Instructions 127 209 139 232
Instr. per cycle 1.35 2.09 1.29 1.93

Branches 18 24 19 27
Branch mispredicts 0.05 0.08 0.02 0.06

Store µops 21.8 37.4 24.4 43.0
Load µops 30.1 77.0 33.4 84.2
Load L1 hits 24.3 75.9 28.8 83.1
Load L2 hits 1.1 0.05 1.2 0.1
Load L3 hits 0.9 0.0 0.5 0.0
Load L3 misses 0.3 0.1 0.3 0.3

Table 6: Performance counter readings in events per packet when forwarding packets
Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 47

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Why is Rust slower than C?
Batch 32, 1.6 GHz Batch 8, 1.6 GHz

Events per packet C Rust C Rust

Cycles 94 100 108 120
Instructions 127 209 139 232
Instr. per cycle 1.35 2.09 1.29 1.93

Branches 18 24 19 27
Branch mispredicts 0.05 0.08 0.02 0.06

Store µops 21.8 37.4 24.4 43.0
Load µops 30.1 77.0 33.4 84.2
Load L1 hits 24.3 75.9 28.8 83.1
Load L2 hits 1.1 0.05 1.2 0.1
Load L3 hits 0.9 0.0 0.5 0.0
Load L3 misses 0.3 0.1 0.3 0.3

Table 7: Performance counter readings in events per packet when forwarding packets
Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 48

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 1 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]
C
Rust
Go
C#
OCaml
Swift
Haskell

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 49

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 10 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]

C
Rust
Go
C#

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 50

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Tail latency at 20 Mpps

0 90 99 99.9 99.99 99.999 Max
0

100

200

99th percentile99.99th percentile99.9999th percentile

Percentile

L
at
en
cy

[µ
s]

C
Rust
Go

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 51

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root (weird implementation detail)
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit and then drop
privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 52

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root (weird implementation detail)
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit and then drop
privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 52

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers

• User space drivers usually run with root privileges, but why?

• Mapping PCIe resources requires root
• Allocating non-transparent huge pages requires root (weird implementation detail)
• Locking memory requires root

• Can we do that in a small separate program that is easy to audit and then drop
privileges?

• Yes, we can
• But it’s not really secure

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 52

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 53

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 54

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 55

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems

CPU

PCIe Root Memory Controller

MMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 56

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems: IOMMU to the rescue

CPU

PCIe Root Memory Controller

MMU

IOMMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 57

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Memory access on modern systems: IOMMU to the rescue

CPU

PCIe Root Memory Controller

MMU

IOMMU

Application

PCIe Device

DMA Engine

Memory

DDR4

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 58

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers on Linux

1. Prepare the system as root
1.1. Bind the device to the special vfio driver
1.2. chown the special magic vfio device to your user
1.3. Allow your user to lock some amount of memory via ulimit

2. mmap the special magic vfio device
3. Do some magic ioctl calls on the magic device
4. Protected DMA memory can also be allocated via an ioctl call
5. Use the device as usual, all accesses are now checked by the IOMMU

• We have implemented this in C and Rust

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 59

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers on Linux

1. Prepare the system as root
1.1. Bind the device to the special vfio driver
1.2. chown the special magic vfio device to your user
1.3. Allow your user to lock some amount of memory via ulimit

2. mmap the special magic vfio device
3. Do some magic ioctl calls on the magic device
4. Protected DMA memory can also be allocated via an ioctl call
5. Use the device as usual, all accesses are now checked by the IOMMU

• We have implemented this in C and Rust

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 59

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unprivileged user space drivers on Linux

1. Prepare the system as root
1.1. Bind the device to the special vfio driver
1.2. chown the special magic vfio device to your user
1.3. Allow your user to lock some amount of memory via ulimit

2. mmap the special magic vfio device
3. Do some magic ioctl calls on the magic device
4. Protected DMA memory can also be allocated via an ioctl call
5. Use the device as usual, all accesses are now checked by the IOMMU

• We have implemented this in C and Rust

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 59

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Does the IOMMU cost performance?

1 2 4 8 16 32 64 128 256
0

5

10

15

Batch size

T
h
ro
u
gh

p
u
t
[G

b
it
/s
]

No IOMMU, 4KiB or 2MiB pages

With IOMMU, 2MiB pages

With IOMMU, 4KiB pages

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 60

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Conclusion: Check out our code

• Meta-repository with links:
https://github.com/ixy-languages/ixy-languages

• Drivers are simple: don’t be afraid of them
• Should your driver really be in the kernel?
• Next time you write a driver: consider a user space driver in a cool language

Paul Emmerich, Simon Ellmann — Drivers in High-Level Languages 61

https://github.com/ixy-languages/ixy-languages

