
1

Black-Box Live Protocol Fuzzing
Timo Ramsauer (me@timo-ramsauer.de)

Abstract—Fuzzing is an automated testing technique. Great quantities of test cases are randomly generated and send to a target.
Fuzzing should be part of the reliability testing process. Especially for IoT-Devices, there is often no access to the source code or the
binaries. They can only be accessed through their network interface. This paper introduces a black-box fuzzer, which alters network
traffic. It builds on the assumption, that the network protocol is known, to improve accuracy. It alters traffic in a system consisting of
several devices. This allows it to detect faults, which reside in non-starting states, with minimal setup effort.

Index Terms—Black-Box, Fuzzing, Network, MQTT, Protocol, Security.

F

Contents

1 Introduction 1
1.1 Fuzzing 1

1.1.1 Black-box fuzzing 1
1.1.2 Target 2

1.2 MQTT 2

2 Previous Work 2

3 The New Fuzzer 3

4 Installation of Fuzzer 3

5 The Fuzzing Process 3
5.1 Generating Traffic 3
5.2 Sample Data 4
5.3 Precomputing 4
5.4 Reading Templates 5
5.5 Altering Packets 5
5.6 Detecting Faults 6
5.7 Logging 6

6 Case Study 6

7 Future Work 6

8 Conclusion 7

References 7

1 Introduction

Fuzzing is a great tool to quickly test implementation of
network protocols and should be part of the assessment of

software security. In this work a fuzzer is presented, which is a
man-in-the-middle non-deterministic network fuzzer written
in Python. The fuzzer randomly changes contents on the
network traffic. It supports TCP and can be configured to
fuzz each field of the higher level protocols. It builds onto
Scapy [1], so it supports dissection of many protocols out of
the box. The fuzzer can be configured to use fitting fuzzing
methods for each protocol field. Furthermore it can easily be
extended to support further protocols and reduces the time
the user must invest to implement this technique.

This fuzzer is the first one to dissect packets on the wire
and allow altering of multiple packets in one session and for
multiple devices. It makes use of the known structure of a
huge range protocols. This makes it possible to efficiently test
whole systems, such as IoT networks.

1.1 Fuzzing

Fuzzing is a popular highly automated software testing tech-
nique, which can be used to increase trust in the absence of
vulnerabilities and bugs, by generating random input [2], [3],
[4]. It works by feeding the target with plenty of test cases,
which may trigger software faults [2], [4]. The challenge is to
produce test-cases, which are prone to trigger bugs.

Fuzzing is a negative testing technique. It does not check if
a feature works, but tries to find flaws, which lead to security
flaws or other undesired behavior. ”Unexpected or semi-valid
inputs or sequences of inputs are sent to the tested interfaces,
instead of the proper data expected by the processing code”
[4]. Dumb fuzzing, which just sends random input to its target
is measured to be 50% less effective than intelligent fuzzing [4].

1.1.1 Black-box fuzzing

This paper focuses on black-box fuzzing. It works without any
knowledge of the targets code. This is often the case, if IoT
products are tested. However, knowledge about the communi-
cation protocol is assumed. This helps with the generation of
semi-valid input. Without the knowledge of the protocol most
test cases will immediately be dismissed and the fuzzer is very
inefficient. To fuzz stateful protocols the fuzzer is inserted as a
Man-in-the-Middle (MitM) between communication partners.
The communication between the components is randomly
altered based on templates. Using this approach, it can be
ensured, that the potentially vulnerable system gets tested in
many different states and not only in its initial case.

If there is access to the code or even only access to the
binary, coverage can be measured. Symbolic Execution and
Evolutionary Fuzzing can be applied. They can more effi-
ciently focus on untested code and perform best [4]. However,
often access to code or debug interfaces is not given, therefore
black-box fuzzing is chosen in this paper.

2

Fig. 1. MQTT Sequence Example [7]

1.1.2 Target
Fuzzers can focus on hardening against different attack vec-
tors. They can focus on different layers of the network com-
munication, on the file system format or the file contents
[4]. Furthermore, fuzzers may focus on servers or clients
[4]. The fuzzer of this paper intends to test an application
implemented on several different devices, such as an IoT
infrastructure running the MQTT protocol. It focuses on the
communication between the devices and on the application
layer. Lower layers are expected to use libraries, which should
be tested separately using better tailored techniques. The
network communication is interesting, because it is exposed
to a bigger attack vector.

1.2 MQTT
In this paper the MQTT protocol is used as an example use-
case of this fuzzing technique.

MQTT is a machine-to-machine (M2M)/”Internet of
Things” connectivity protocol. It was designed as an
extremely lightweight publish/subscribe messaging
transport. It is useful for connections with remote
locations where a small code footprint is required
and/or network bandwidth is at a premium. For
example, it has been used in sensors communicating
to a broker via satellite link, over occasional dial-
up connections with healthcare providers, and in a
range of home automation and small device scenar-
ios. It is also ideal for mobile applications because
of its small size, low power usage, minimised data
packets, and efficient distribution of information to
one or many receivers. [5]

Shodan currently (11.2018) finds about 65.500 MQTT
brokers on the Internet [6]. A vulnerability in a popular broker
software would expose a lot of devices to attacks. The protocol
is open and fairly simple, but very popular and gets increasing
attention, because of the IoT movement. It is therefor a good
target for a case study.

MQTT uses a publish and subscribe pattern. It doesn’t use
a common client-server architecture to communicate, but uses

a broker to distribute messages. MQTT clients are devices,
which either publish or subscribe to an MQTT broker. They
can be very small resource constraint devices. Client libraries
are available for a wide range of programming languages and
can easily be implemented [8], [9]. The broker is the central
system, all messages pass through. It is responsible to receive
all messages and forward them to the subscribers. It may
have further tasks such as authentication and authorization
of clients, filtering of messages and management of persistent
client sessions [8].

MQTT connection are based on TCP/IP. First a TCP
session needs to be established between the client and the
broker [9]. The clients initiate a MQTT session by sending a
CONNECT message, which is answered by the broker with
a CONNACK [9], [10]. An example setup of a connection is
shown in figure 1.

After the connection is successfully initiated, clients can
subscribe to so called topics. They do this by sending a SUB-
SCRIBE request, which is answered by a SUBACK packet [9].
If a client now publishes a message to the same topic it is
forwarded to this subscriber [9].

The PUBLISH packet (shown in figure 2), which is used
to publish a message can have different QoS-levels. It ranges
from a simple PUBLISH message, which is only acknowledged
on the TCP layer to a four-part handshake between the sender
and the receiver [8], [9]. The sender needs to keep track of the
state and may behave differently to incoming messages and
therefore expose different vulnerabilities. Because of that, it
needs to be tested in all states.

Each packet consists of several different fields having dif-
ferent data types. The packet identifier of an publish packet
is for example a two byte integer [9] (compare figure 2). The
topic name is an UTF-8 encoded string. It starts with the
length of the string (2 byte integer) and then with the actual
UTF-8 encoded string. The QoS-flag is two bits long and can
have the values 0x00, 0x01 and 0x10. Further more there are
binary flags such as the retain flag and the DUP flag of the
publish packet. The MQTT header has further more a fairly
complicated way to encode the length of the rest of the packet.

”The Remaining Length is encoded using a variable length
encoding scheme which uses a single byte for values up to
127. Larger values are handled as follows. The least signif-
icant seven bits of each byte encode the data, and the most
significant bit is used to indicate that there are following bytes
in the representation. Thus each byte encodes 128 values and
a ”continuation bit”. The maximum number of bytes in the
Remaining Length field is four.” [9] 1

The different data types should be fuzzed differently to
more efficiently test the program. If the length fields are
not tested, they should be recomputed to create a semi-valid
packet, which passes first validation checks.

2 Previous Work
There are other tools such as ProxyFuzz [12], which intercept
network traffic and fuzz it on its way. However, it is protocol
agnostic [4]. This approach is inefficient for many protocols,
because a lot of packets are dropped, because of validations
such as checksums [4]. Nonetheless, the fuzzer is easy to setup

1. This was not implemented correctly in Scapy, which is used to
dissect the packet. It was fixed in pull request #1371 [11].

3

Fig. 2. Fields inside a publish packet [8]

Fig. 3. Component Diagram

[4], which is an advantage. The fuzzer introduced in this paper
tries to combine this approach, with protocol knowledge.
Because many protocols are already known by Scapy, the ease
of use remains, but efficiency is increased.

Other network fuzzers such as the Mutiny Fuzzer [13],
allow traffic generation on past recorded traffic using the
Radamsa fuzzer. However, it does not modify life traffic.

The Automated Network Protocol Fuzzing Framework
(AutoFuzz) ”learns a protocol implementation by construct-
ing a Finite State Automaton (FSA) which captures the
observed communications between a client and a server” [14]
and uses a proxy server comparable to ProxyFuzz.

Polymorph allows fuzzing of live traffic and is able to
dissect packets [15]. However TCP breaks, if more than one
packet is modified. It does not keep track of the connections.
There is a workaround for one system, but it breaks for
multiple clients accessing one server. It’s not easy to fuzz
multiple fields and to use separate methods to fuzz. This is
important, because variable length fields can include very
different values than a field, which is always a fixed length.
It makes the fuzzer inefficient to put in values bigger than the
fixed length, because it breaks the packet.

3 The New Fuzzer
The fuzzer is written in Python and allows modification of
packets ”on the air”. The fuzzer is introduces as a Man-in-the-
Middle between the different network components, allowing it
to fully control the communication. The fuzzer aims to be able
to provide its user a simple way to perform fuzzing on a wide
range of protocols.

The basic components are shown in figure 3. The
TemplateGenerator generates templates from a package cap-
ture file. It altered by an analyst and is read back in by a
TemplateReader.

The ConnectionHandler creates a MultInceptor for each
TCP connection, which devices setup. The MultInceptor

fuzzes one connection using the fuzz() method, which al-
ters the fields of each packet depending on the template. It
depends on the libraries Scapy and Radamsa to dissect and
fuzz the packet.

To check if all devices are still alive they are added to the
MQTTAlive components, which periodically pings them. If a
fault is detected it shuts all threads down.

In the following sections each step of the process will be
covered in greater detail. It will be explained, how a user
can use the fuzzer, how it was implemented and why certain
implementation and process choices were made.

4 Installation of Fuzzer
The implementation of the fuzzer is on https://github.com/
ramsaut/mqtt fuzzing. It can be downloaded using the git
clone command.

The fuzzer requires Radamsa and several Python packages
to function. The installation process of Radamsa is explained
at https://gitlab.com/akihe/radamsa. It is recommended to
setup a virtual environment with pip as a Python environ-
ment. The requirements can be installed using the following
command inside the project folder:

pip install -r requirements.txt

The fuzzer can be configured in the config.ini file. If the
fuzzer shall be configured by external programs the dict in
mqtt fuzzing.config.config needs to be overwritten e.g.
using the read json method.

The fuzzing process can be started by running the
mqtt fuzzing.py script.

5 The Fuzzing Process
First a test system is setup, which generates network traffic.
This traffic is recorded to create a baseline. The capture is
recorded and the used protocols are extracted. The security
researcher decides, which protocols and which fields inside the
protocol shall be fuzzed. The fuzzer is then integrated into the
system and the traffic is altered on its way through the fuzzer.
The fuzzer needs to check, if the target had any errors. To
allow the researcher to analyze how the system failed, the test
cases are saved and the error is logged. Following the process
is described in greater detail.

5.1 Generating Traffic
The traffic, which needs is altered by the fuzzer first needs
to be generated. To efficiently fuzz, there needs to be a high
bandwidth of traffic, otherwise the fuzzing process is too slow.
The protocol needs to be known to Scapy, which is the Python
library used to dissect the packages.

A sample system is implemented to generate traffic. Multi-
ple virtual machines are setup in KVM. One of them exposes
an MQTT broker. Further virtual machines can be used as
clients. The virtual machines are setup using Ubuntu Core.

Ubuntu Core is a tiny, transactional version of
Ubuntu for IoT devices and large container deploy-
ments. It runs a new breed of super-secure, remotely
upgradeable Linux app packages known as snaps -
and it’s trusted by leading IoT players, from chipset

4

Fig. 4. Extract of the sample traffic data

vendors to device makers and system integrators.
[16]

This makes it very suitable to setup the test environment.
Each machine gets a static IP in an separated network. All
machines get configured with the Mosquitto MQTT imple-
mentation.

One client (192.168.122.11) subscribes to the topic test on
the broker (192.168.122.10). Furthermore it publishes a mes-
sage to the same topic, which is forwarded to the subscriber.
The publish is repeated regularly. The traffic is generated
using the following bash script:

mosquitto.sub -h 192.168.122.10 -p 1883 -t test &

while true; do
mosquitto.pub -h 192.168.122.10 -t test -m "This␣

↪→ is␣a␣test␣message."
sleep 1
done

Furthermore an Arduino MKR1000 is setup with a simple
MQTT example. It uses the Wifi101 and the PubSubClient
libraries to connect to a wireless network and to implement
the MQTT protocol. It connects to an MQTT server then
publishes ”hello world” to the topic ”outTopic” every two
seconds. Furthermore it subscribes to the topic ”inTopic”,
printing out any messages it receives. It assumes the received
payloads are strings not binary. If the first character of the
topic ”inTopic” is an 1, the Led of the micro-controller is
switched ON, else it is switched off. It will reconnect to the
server if the connection is lost using a blocking reconnect
function. The Arduino is flashed using the Arduino IDE.

5.2 Sample Data
The traffic can be captured on the virtual machine host
using Wireshark. An extract of the traffic is shown in figure
4. In the Wireshark screen-shot one can notice, that for a
simple subscribe request four packets are send. The connect
command and the corresponding acknowledgement start the
session. Then a subscribe request and its acknowledgement
are send. There are further ACK packets on the TCP layer.
However, these are transparent to the fuzzer and are therefore
not included. The gathered traffic is exported to a pcap file,
which can be used in the precomputation of the fuzzer.

5.3 Precomputing
The sample data is accepted as a network packet capture
(pcap-file). JSON-templates are generated for each protocol

layer (above TCP) and direction (to broker / from broker).
The user can later specify, which fields inside packets shall be
fuzzed, by altering the JSON-templates.

The name of the layer and the direction of the packet
(towards the broker or from the broker) is saved. Furthermore
for each field in the layer the values which occurred and the
type of the field are saved. An empty fuzzing dict in included.
Each template looks similar to the following example:

{
"to_broker": true,
"name": "MQTT",
"attributes": {

"fields": {
"type": {

"values": [
0,
...
14

],
"type": "BitEnumField",
"fuzzing": {

"fuzzer": null,
"cases": null

}
},
...
"len": {

"values": [
0,
...
118

],
"type": "VariableFieldLenField",
"fuzzing": {

"fuzzer": null,
"cases": null

}
}

}
}

},

The fuzzer can be set to:

"fuzzing": {
"fuzzer": "scapy",
"cases": null

}

5

In this case random values are chosen for the field. It depends
on the Scapy randval() method. This method sets the field
to a random valid value.

The fuzzer can also be set to:

"fuzzing": {
"fuzzer": "radamsa",
"cases": "packet"

}

In this case the general purpose fuzzer Radamsa is used.
It works by reading sample files of valid data and
generating interestingly different outputs from them.
The main selling points of radamsa are that it has al-
ready found a slew of bugs in programs that actually
matter, it is easily scriptable and easy to get up and
running. [...] Radamsa is an extremely ”black-box”
fuzzer, because it needs no information about the
program nor the format of the data. [...] Radamsa is
intended to be a good general purpose fuzzer for all
kinds of data. [17]

This fuzzer is recommended for all fields with variable length.
For MQTT these might for example be the topic or the
message of an MQTTPublish. The fuzzer bases its random
value on the value of the original package. It is block-based
and generally keeps the format valid(-ish). In future versions
an option to base the new value on a pool of all past values
may be added.

The templates are generated using the following code:

class TestGenerator():
generator = TemplateGenerator()

def test_create_templates(self):
list = self.generator.read_capture()
templates = self.generator.create_templates

↪→ (list)
self.generator.save_to_disk(templates)

A generator is setup using TemplateGenerator. A config
file is read in and the configuration is saved in the
config dictionary. A list of packages is read in from
the file specified in config[’Fuzzer’][’MQTT Sample’]
using the method self.generator.read capture().
Templates are generated using
self.generator.create templates(list) and written to
disk using self.generator.save to disk(templates).

5.4 Reading Templates
After the user adjusted the templates, by choos-
ing the fields, which shall be fuzzed. The templates
are read in using the method readTeamplates() of
mqtt fuzzing.gen template.TemplateReader. It reads
the templates from config[’Fuzzer’][’Templates’].

reader = TemplateReader()
templates = reader.readTeamplates()

5.5 Altering Packets
To test a system the fuzzer is inserted between the clients and
the broker as a Man-in-the-Middle. In a real system the fuzzer

might be introduced to the network by ARP spoofing or other
means of redirecting the traffic flow. Sometimes systems might
allow to set the address of the broker. This is the case for the
test system. If SSL is used, the right certificates need to be
set up. A tool such as BetterCAP may be used to perform the
MitM attack and SSL stripping [18].

The fuzzer is able to handle several connections at the
same time. Each connection is handled in its own thread using
its own socket. All devices involved in the connections need to
be checked, if they are still alive or if there was a fault.

The fuzzer is altering packets on their way. For this
purpose the packet is matched to a template, matching the
direction and the protocol type. The packet is dissected and
fields specified in the template are fuzzed. The packet is then
reassembled to a valid packet. Length fields and checksums
are recomputed, if they are not fuzzed, to create semi-valid
packets, which pass initial validation testing a find problems
residing deeper in the process.

To understand the usage of the fuzzer, we take a look at
the following snippet:

import unittest
from mqtt_fuzzing.intercept import *
from mqtt_fuzzing.gen_template import *

class TestIntercept(unittest.TestCase):
def setUp(self):

reader = TemplateReader()
self.templates = reader.readTeamplates()

def test_intercept(self):
c = ConnectionHandler()
c.set_templates(self.templates)
c.start()

The templates are read in as explained in the previous
chapter. To intercept traffic a ConnectionHandler() is cre-
ated and the templates are set. Furthermore the handler is
started.

The ConnectionHandler automatically opens a socket on
the port specified in config[’Broker’][’Port’]. Further-
more it creates an MQTTAlive, which checks if the broker and
all registered clients are still alive or if a bug has been found.
This component is further explained in the chapter 5.6.

For each new connection the ConnectionHandler creates
a MultInterceptor and adds it to the list of clients in the
MQTTAlive.

The MultInterceptor opens a remote socket corre-
sponding to the local socket. The remote socket handles
the traffic to and from the broker, while the local socket
handles the traffic with the client.

The MultInterceptor checks if an SSL connection is
handled using the config[’Broker’][’SSL’] attribute. If
that is the case an SSL connection is opened in both directions
using the certificates specified in the config. The analyst needs
to configure the client to use the certificate of the fuzzer and
the fuzzer needs to use the certificate of the broker.

The interceptor listens for traffic on both sockets. The
TCP layer and all below are stripped away, the data is
modified using the modify() method and is forwarded to the
other device.

6

The modifying is mainly done in the
mqtt fuzzing.fuzz.fuzz() method, which is called
by modify(). It matches each layer of the packet to its
template:

layer = templates[(to_broker, type(payload).
↪→ __name__)]

For each direction (to broker, from broker) there is another
template. For each field inside the layer the fuzzer looks in the
templates and determines the fuzzing method. Currently are
two methods implemented. These were explained in chapter
5.3.

(a) Original

(b) Fuzzed

Fig. 5. Comparison of the original package and the fuzzed package

In the example shown in figure 5, an MQTT packet and
its fuzzed version can be seen. The topic length is fuzzed. All
lower layers are recalculated and the packet is forwarded to
the broker.

If certain fields were not fuzzed they are recalculated to
create valid packets:

Recompute if values have not been fuzzed
if (’MQTT’, ’len’) not in been_fuzzed:
del packet[’MQTT’].len
if ’MQTTPublish’ in packet:
if (’MQTTPublish’, ’length’) not in been_fuzzed:
del packet[’MQTTPublish’].length
if ’MQTTConnect’ in packet:
if (’MQTTConnect’, ’length’) not in been_fuzzed:
del packet[’MQTTConnect’].length
if (’MQTTConnect’, ’clientIdlen’) not in

↪→ been_fuzzed:
del packet[’MQTTConnect’].clientIdlen

For MQTT the length fields need to be recalculated. The
fuzzer deletes all fields, which get automatically calculated to
create a valid packet. The recalculation is handled by Scapy.

5.6 Detecting Faults
Faults need to be detected on a case by case basis. However
the architecture is designed to allow easy addition of fault
detection.

The fault detection is implemented in the class MQTTAlive.
MQTTAlive can be found in mqtt fuzzing.mqtt ping. It is
used to check if the broker is still alive and to shutdown the
fuzzer, if an error is detected. Two MQTT clients are created
for this purpose:
import paho.mqtt.client as paho
client1 = paho.Client("heartbeatsub")
client2 = paho.Client("heartbeatpub")

The first client subscribes to the topic heartbeat. The
second clients publishes packages to this topic in the in-
terval specified in config[’Heartbeat’][’Frequency’]. If
the second client does not receive a packet for a time of
config[’Heartbeat’][’Timeout’]. The fuzzer is stopped.
If a client does not send a message for the time specified in
config[’Heartbeat’][’Timeout’]. The fuzzing is stopped
as well. This is implemented in the MultInterceptor.

5.7 Logging
The unaltered traffic is saved to a pcap file. The altered traffic
is saved to a pcap file. Found faults are logged.

6 Case Study
The fuzzer was introduced, between a client and a broker. The
client was the Arduino MKR1000 mentioned in section 5.1.
The broker is using the popular Mosquitto implementation.
The outlined fuzzing process was applied an the fuzzer was
instructed to fuzz all fields. All fields of variable length were
instructed to be fuzzed with Radamsa. All other fields were
fuzzed with the Scapy module.

A bug could be found. When processing fields of variable
length the broker Mosquitto and the Arduino MQTT library
pubsubclient wait for further data.

A common MQTT packet such as a publish packet is
fuzzed. A length field e.g. the remaining length field in the
header is increased. The package is acknowledged on the
TCP layer. Nevertheless, their is no answer on the MQTT
layer, a MQTTConnect is for example not answered with
an MQTTConnAck. The TCP session is not closed, as it is
commonly done, when a faulty packet is received.

Further research needs to be done to validate the following
possible attack. The memory to write the payload into (up
to 256 MB) is reserved to store each MQTT packet. Multiple
connections are opened to the target by the attacker. Because
of that, all of the memory is used up resulting in a DoS of the
target.

7 Future Work
The program takes a black box approach to fuzz network
systems. It can be adopted for other protocols. The following
parts, would need to be rewritten. The recomputation needs
to be adopted to recompute all length and checksum fields of
the specific protocol. This part may be automated in future
versions by including an attribute in the template which
specifies which fields need recomputation. The MQTTAlive
is protocol specific. For other protocols, a specific methods
to check if the system is alive needs to be implemented.
Furthermore the fuzzer could be extended to parse logs of
the MQTT-devices to more reliably detect errors.

Further methods to fuzz the protocol fields should be
implemented and their effectiveness needs to be checked.

7

8 Conclusion
A black-box live fuzzer was implemented and assessed. It is
able to fuzz a MQTT system and was able to find faults.
It can be used to fuzz IoT devices, without access to their
source code. The functionality was demonstrated by fuzzing
the MQTT system. However, the methodology can also be
used for other protocols.

The fuzzer can intercept multiple connections at the same
time. By dissecting the packet and fuzzing single protocol
fields using fitting fuzzing techniques, it finds faults more
reliable.

References
[1] Philippe Biondi, “Scapy.” [Online]. Available: https://secdev.

github.io/
[2] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang,

“Fuzzing: State of the Art,” IEEE Transactions on Reliability,
vol. 67, no. 3, pp. 1199–1218, Sep. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8371326/

[3] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security
Privacy, vol. 3, no. 2, pp. 58–62, Mar. 2005.

[4] A. Takanen, J. D. Demott, and C. Miller, Fuzzing for software
security testing and quality assurance, ser. Artech House in-
formation security and privacy series. Norwood, MA: Artech
House, 2008, oCLC: ocn213308372.

[5] “MQTT.” [Online]. Available: http://mqtt.org/
[6] “mqtt - Shodan Search,” Nov. 2018. [Online]. Available:

https://www.shodan.io/search?query=mqtt
[7] “Intro to REST and MQTT,” Jul. 2017. [Online]. Available:

http://wireless.ictp.it/school 2017/Slides/MQTT.pdf
[8] “MQTT Essentials Part 4: MQTT Pub-

lish, Subscribe & Unsubscribe,” Feb. 2015.
[Online]. Available: https://www.hivemq.com/blog/
mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe

[9] “MQTT Version 3.1.1,” OASIS Open, p. 81, Oct. 2014.
[Online]. Available: http://docs.oasis-open.org/mqtt/mqtt/v3.
1.1/os/mqtt-v3.1.1-os.pdf

[10] “MQTT Essentials Part 6: Quality of Service 0, 1 & 2,”
Feb. 2015. [Online]. Available: https://www.hivemq.com/blog/
mqtt-essentials-part-6-mqtt-quality-of-service-levels

[11] Timo Ramsauer, “Fixed MQTT module for payload length
> 127 bytes #1371,” Nov. 2018, original-date: 2015-10-
01T17:06:46Z. [Online]. Available: https://github.com/secdev/
scapy

[12] “ProxyFuzz - MITM Network Fuzzer in Python,” Jun.
2007. [Online]. Available: https://www.darknet.org.uk/2007/
06/proxyfuzz-mitm-network-fuzzer-in-python/

[13] “Mutiny Fuzzing Framework,” Nov. 2018, original-date:
2017-10-27T19:23:53Z. [Online]. Available: https://github.com/
Cisco-Talos/mutiny-fuzzer

[14] S. Gorbunov and A. Rosenbloom, “AutoFuzz: Automated Net-
work Protocol Fuzzing Framework,” p. 7, 2010.

[15] Santiago HernÃąndez Ramos, “Polymorph: A Real-Time Net-
work Packet Manipulation Framework,” Apr. 2018.

[16] Canonical, “Ubuntu Core,” 2018. [Online]. Available: https:
//www.ubuntu.com/core

[17] Aki Helin, “radamsa.” [Online]. Available: https://gitlab.com/
akihe/radamsa

[18] “BetterCAP.” [Online]. Available: https://www.bettercap.org/

